Over-expression of growth differentiation factor 15 (GDF15) preventing cold ischemia reperfusion (I/R) injury in heart transplantation through Foxo3a signaling
نویسندگان
چکیده
Ischemia reperfusion (I/R) injury which inevitably occurs during heart transplantation is the major factor leading to organ failure and graft rejection. In order to develop new therapies to prevent I/R injury, we used both a murine heart transplantation model with 24 hour cold I/R and an in vitro cell culture system to determine whether growth differentiation factor 15 (GDF15) is a protective factor in preventing I/R injury in heart transplantation and to further investigate underlying mechanisms of I/R injury. We found that cold I/R caused severe damage to the endocardium, epicardium and myocardium of heart grafts from wild type C57BL/6 mice, whereas grafts from GDF15 transgenic (TG) mice showed less damage as demonstrated by decreased cell apoptosis/death, decreased neutrophils infiltration and the preservation of the normal structure of the heart. Over-expression of GDF15 reduced expression of phosphorylated RelA p65, pre-inflammatory and pro-apoptotic genes while it enhanced Foxo3a phosphorylation in vitro and in vivo. Over-expression of GDF15 inhibited cell apoptosis/death and reduced neutrophil infiltration. In conclusion, this study, for the first time, demonstrates that GDF15 is a promising target for preventing cold I/R injury in heart transplantation. This study also shows that the resultant protective effects are mediated by the Foxo3 and NFκB signaling pathways.
منابع مشابه
Effects of silibinin on hepatic warm ischemia-reperfusion injury in the rat model
Objective(s): Liver ischemia-reperfusion injuries (I/RI) are typically the main causes of liver dysfunction after various types of liver surgery especially liver transplantation. Radical components are the major causes of such direct injuries. We aimed to determine the beneficial effects of silibinin, a potent radical scavenger on liver I/RI.Materials...
متن کاملThe protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملProtective role of remote ischemic per-conditioning in acute renal injury induced by ischemia reperfusion via TLR-4 and TNF-α signaling pathway in rats
sIntroduction: Acute kidney injury (AKI) induced by ischemia-reperfusion (I / R) of the kidney as an inflammatory process in which multiple inflammatory factors are involved. Recently, one of the modalities of inflammation in AKI is Remote Ischemic Per-Conditioning (RIPerC). Materials and Methods: In this study, bilateral renal artery and vein occlusion were done for 45 minute and reperfusion a...
متن کاملMelatonin Protective Effects against Liver Ischemia/Reperfusion Injury
Hepatic ischemia-reperfusion (I/R) is a common phenomenon during liver surgery, transplantation, infection and trauma which results in damage and necrosis of the hepatic tissue through different pathways. Mechanisms involved in I/R damage are very intricate and cover several aspects. Several factors are involved in I/R-induced damages; briefly, decrease in sinusoidal perfusion and ATP generatio...
متن کاملChronic Morphine Preconditioning: Interaction of mTOR and iNOS in protection against Ischemia/Reperfusion injury
Chronic morphine (CM) treatment increases the phosphorylation of the mammalian target of rapamycin (mTOR), which confers neuroprotection against ischemia/reperfusion (I/R) injury. Besides its important regulatory role in the proliferation, metabolism, and survival of cells, the mTOR is critically involved in intracellular signaling events during I/R injury. In the present study, we investigated...
متن کامل